Wavelet Based Signal Demodulation Technique for Bearing Fault Detection
نویسنده
چکیده
Diagnostics of rolling elements under varying operational conditions, where disturbances and other rotating elements have strong influence on correctness of analysis, requires engagement of advanced signal processing techniques. Extraction of signal components generated by bearing faults has been proven to be an exceptionally promising method for rolling element bearing fault detection. In this paper, wavelet signal demodulation diagnostic techniques is presented. The method is based on the wavelet transform as a method of signal demodulation. Properties of time–frequency representation of the signal enables extraction of typical damage signatures from the signal. First step of this method is a wavelet filtration, which uses Continuous Wavelet Transform (CWT). For this transformation, the Morlet wavelet function has been used. Next, the envelope function of a decoupled frequency component is estimated from wavelet coefficients. Finally, the Discrete Wavelet Transform (DWT) has been used as a post–processing method.
منابع مشابه
Rolling Bearing Fault Analysis by Interpolating Windowed DFT Algorithm
This paper focuses on the problem of accurate Fault Characteristic Frequency (FCF) estimation of rolling bearing. Teager-Kaiser Energy Operator (TKEO) demodulation has been applied widely to rolling bearing fault detection. FCF can be extracted from vibration signals, which is pre-treatment by TEKO demodulation method. However, because of strong noise background of fault vibration signal, it is...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملAdaptive Redundant Lifting Wavelet Transform Based on Fitting for Fault Feature Extraction of Roller Bearings
A least square method based on data fitting is proposed to construct a new lifting wavelet, together with the nonlinear idea and redundant algorithm, the adaptive redundant lifting transform based on fitting is firstly stated in this paper. By variable combination selections of basis function, sample number and dimension of basis function, a total of nine wavelets with different characteristics...
متن کاملIncipient fault diagnosis of rolling element bearing based on wavelet packet transform and energy operator
This paper mainly deals with the issue of incipient fault diagnosis for rolling element bearing. Firstly, an envelope demodulation technique based on wavelet packet transform and energy operator is applied to extract the fault feature of vibration signal. Secondly, the relative spectral entropy of envelope spectrum and the gravity frequency are combined to construct two-dimensional features vec...
متن کاملA Method of Bearing Fault Feature Extraction Based on Improved Wavelet Packet and Hilbert Analysis
In order to supply a gap of current resonance vibration and STFT demodulation method applied to rolling bearing fault feature extraction of city rail vehicle, a fault diagnosis method for rolling bearing is presented, which is based on the integration of improved wavelet packet, frequency energy analysis and Hilbert marginal spectrum. When faults occur in rolling bearing, the energy of the roll...
متن کامل